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Forward diffraction of Stokes waves by a thin wedge 

By DICK K. P. YUE A N D  CHIANG C. ME1 
R.M. Parsons Laboratory, Department of Civil Engineering, 

Massachusetts Institute of Technology 

(Received 18 May 1979 and in revised form 22 October 1979) 

The diffraction of a steady Stokes wave train by a thin wedge with vertical walls is 
studied when the incident wave is directed along the wedge axis (grazing incidence). 
Parabolic approximation applied recently by Mei & Tuck (1 980) to linear diffraction 
is extended to this nonlinear case. Significant effects of nonlinearity are found numeri- 
cally, in particular the sharp forward bending of wave crests near the wedge. The 
computed features are found to corroborate the existing experiments only quali- 
tatively; the controlling factors in the latter being not completely understood. An 
analytical model of stationary shock is proposed to approximate the numerical results 
of Mach stems. 

1. Introduction 

The diffraction of finite-amplitude waves in water is a matter of increasing practical 
importance in oceanographic engineering. Large structures for offshore exploration 
must be able to withstand the forces due to powerful storm waves. Breakwater en- 
trances must also be designed for large waves. Current design practices are mostly 
based on model experiments in the laboratory and on theoretical estimates of the 
linearized theory. Theoretical developments of diffraction of finite-amplitude waves 
are so far scarce. For waves in water of intermediate or great depth, a second-order 
theory is available only for a two-dimensional floating body (Lee 1966). For three- 
dimensional motions the second-order theory for the simplest geometry of a vertical 
circular column was until recently (Molin 1979) controversial (Raman, Jothishankar 
& Venkatanarasaiah 1977; Isaacson 1977; Chakrabarti 1978). There exists very little 
experimental work which is relevant. 

For long waves in shallow water, a very interesting phenomenon was found experi- 
mentally by Perroud (1957) and Chen (1961) and reported by Wiegel (1964u)b) for 
solitary waves incident obliquely on a straight wall. It is observed that, for angles of 
incidence less than 45O, the familiar linear picture that the incident and the reflected 
wave meet a t  the wall symmetrically about the normal to the wall, is replaced by a 
three-wave-crest system. In particular, there is now a third wave crest (called the 
stem) which intersects the wall normally; the incident wave and the stem meet at  a 
point some distance away from the walI. For incidence angles less than 20' or so, the 
reflected crest disappears, leaving only the incident crest and the stem. Because of its 
geometrical resemblance to the reflexion of shock waves in gas dynamics (see Lighthill 
1949; Whitham 1974) the phenomenon in shallow water waves has also been called 
Much rejiexion by Wiegel. 
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Similar experiments of oblique incidence of periodic waves in finite water depth has 
been performed by Nielsen (1 962) and more recently by Berger & Kohlhase (1976).  The 
kinematics of the wave crests is much the same as in the case of solitary waves. From 
the experiments, the following features are noted. The wave amplitude along the 
barrier, i.e. the stem height, increases downwave for a finite distance and then levels 
off gradually. At any station, this amplitude increases with angle of incidence. The 
width of the stem region, which generally increases with distance along the wall, 
increases with decreasing incidence angle and with decreasing water depth. The stem 
width appears to be greater for longer incident waves. (This will be discussed later.) It 
is important to stress that there is substantial scatter in the experimental data, so that 
only general trends and qualitative conclusions can be made. In  particular, the depend- 
ence on incident wave height is often ambiguous, although selected experiments indi- 
cate decreasing relative stem heights and increasing stem widths for higher waves. 
Aside from the usual concern for dissipation and errors in measurements, the scattering 
of data has been attributed to possible reflexions due to the finite length and width of 
the wave flume and diffraction from the far edge of the barrier, although the instability 
of Stokes waves may be another source of complication. 

In  shallow water a theory for the diffraction of solitary waves is now available by 
Miles ( l 9 7 7 a ,  b )  who applied Whitham’s method of geometrical shock dynamics. For 
shallow water and linearized periodic waves a t  grazing incidence on a slender body, 
Mei & Tuck (1980) have recently found it expedient to employ the parabolic approxi- 
mation first devised for radio-wave propagation over the earth by Leontovitch (1944) 
and Fock (1946, 1965) and now extended to many problems in acoustics (see Tappert 
1977, and references therein). In  this paper we further extend this approximation to 
nonlinear Stokes waves. It will be shown that the nonlinear diffraction of grazing 
incidence is governed by a cubic Schrodinger equation, a fact that can be anticipated 
in light of Mei & Tuck (1980) .  Numerical solutions are given for a vertical wedge with a 
small apex angle. All the computed results are in qualitative agreement with existing 
experiments, though precise comparison cannot be made until the scattering of experi- 
mental data is better understood. A simplified analytical model treating the region of 
Mach stems as one side of a shock is shown to agree surprisingly well with the computa- 
tions. We have also obtained further numerical results for a grazing incidence of Stokes 
waves on a parabola and an island of finite length, and for the edge diffraction by a thin 
semi-infinite breakwater when the incidence is nearly normal. These results are much 
less dramatic and hence are not presented here. 

Because of the side-band instability of Benjamin & Feir (1967) the time-dependent 
diffraction of transient Stokes waves (packets, trains) is likely to be even more import- 
ant and interesting and will be the subject of a subsequent paper. 

2. The parabolic approximation 

We consider the diffraction of a, plane Stokes wave (primary wavenumber k,, 
amplitude A,) from x - -m, by a thin long strut of width B, length L (along the x 
axis), and in water depth h. 

It is assumed from the outset that the body is slender, 

B / L <  1,  (2.1) 
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and long compared to the incoming wave, 

k o L %  1. 

Assuming inviscid, irrotational flow, the exact equations for the velocity potential 

V2# = 0 for - h < z < {(x, y ,  t ) ,  ( 2 . 3 ~ )  

g#c++tt+ lv#I;+g(v#.v) lVq512 = 0 on = !%,Y,t), (2.3b) 

# , = O  on z = - h ,  ( 2 . 3 ~ )  

and #t+g5++1V#12 = 0 on z = [ (x ,y , t ) .  (2.3d) 

The gravitational acceleration is designated by g. 

q5 and the free-surface elevation fl are 

2.1. The approximate governing equation 
TO fix ideas, let us recall the salient features of the linearized diffraction of short waves 
by a long body. Given vertical side walls for the entire sea depth, and linearizing (2.3), 
the velocity potential may be factorized as 

(2.4) 

@xx+@,,+k$cP = 0 for -h  < z c 0. (2.5) 

#(x, y ,  2, t )  = @(x, y, t )  cosh k,(z + h )  for - h < z < 0, 

and ( 2 . 3 ~ )  leads to the Helmholtz equation 

Since the longitudinal axis of the body is in the direction of wave propagation, and 
ko L 9 1 and B / L  < 1; we expect the backward scattering to be small so that the waves 
remain essentially propagating in the forward direction with the amplitude and phase 
modulated slowly in x (with the scale of L )  and in y. 

It is, therefore, reasonable to assume 

@ = Re(Yeikox), (2.6) 

where Yx < k,Y. (2.7) 

2ik0 Yx + Y,, + Yxx = 0. (2.8) 

Clearly 2 i k 0 Y x / Y x x  = O ( k o L )  % 1 (2.9) 

2ik0 Yx + Y,, = O(ko L)-l k,  Yx, (2.10) 

Substituting (2.6) into (2.5), we obtain 

and the third term in (2.8) may be omitted with a relative error of O(k,L)-', 

which implies that the length scale of transverse modulation L, is given by 

(2.11) 

This is called the parabolic approximation. 
Now, for Stokes wave, nonlinearity affects the wave at the leading order through 

the phase over a distance of O(k,@)-l ,  where E is of the order of the wave slope. In 
order that nonlinear modulation and spatial modulation imposed by the body be 
equally important, we choose 

(k0c2)-l = O ( L )  or k , L  = 0(c2). (2.12) 
2-2 
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It follows from (2.11) that 
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ko Ly = O(s-1). (2.13) 

Returning to  the governing equations (2.3), we introduce the small ordering parameter 
e and slow co-ordinates X = 6% and Y = ey as suggested by the preceding argument, 
and use multiple-scale expansions as follows : 

and 

with 

(2.14) 

(2.16) 

(2.16) 

Details of the perturbation analysis are a mixture of Benney & Roskes (1969), Chu 
& Mei (1970) and Davey & Stewartson (1974), and an outline is given in the appendix 
for the sake of convenience. The result is as follows. 

Let the first-order complex amplitude be A [see (A l l ) ,  (A 12)]; then the governing 
equation for A is 

where 

and 

i3A i a2A 
2--- -+iK'1Al'A = 0, ax koaYz 

C cosh 4q+ 8 - 2 tanh2q 
K' = hi-!? , q = koh, coo 8 sinh4 q 

(2.17) 

( 2 . 1 8 ~ )  

Co = w/ko (2.18 b )  

am w sinh2q c 00-i3ko - -= k O s i n h 2 q ( T + ' ) *  ( 2 . 1 8 ~ )  

Equation (2.17) is formally identical to the well-known cubic Schrodinger equation 
encountered in the study of unidirectional nonlinear evolution of dispersive waves 
(Zakharov & Shabat 1972), where X would take the role of time and Y the distancein 
the co-ordinate system travelling at group velocity. Although K can take on different 
signs in general (Karpman 1975), in the present context it is always positive as defined 
by (2.18a), which corresponds to nonlinear dispersive waves without self-focusing or 
transverse side-band instability. We now turn to the boundary and initial conditions 
for (2.17). 

2.2.  Boundary and initial conditions 

Let the body be symmetric about x axis and the walls be vertical throughout the sea 
depth and given by 

(2.19) 

In the stretched co-ordinates, the body boundary is at 

Y = f €koBYB(X), ( 2 . 2 0 ~ )  

where we have let Y B  = ( k O B )  'B (2.20 b )  

with k,YB = O(1). (2.20c) 
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Considering the upper (y > 0) half of the symmetric problem, the boundary condition 
on the body is 

or 

( 2 . 2 1 4  

(2 .21b)  

Using (2 .20) ,  (2.2 1 b )  becomes in normalized variables 

and, substituting in the expression for # from (A l l) ,  we obtain 

(iA, ei+ + *) + $olF + O(e)I 

[ i ( i k , ,A i@++]+O(~)  s2(koB) Yb(X)  on Y = ek,BYB(X). 
(2 .23)  

g cosh Q 
2w cosh q 

We now equate the first harmonic terms in (2 .23)  so that, to leading order, 

(2 .24)  
aA - = ikoAekoBYL(X) on Y = sk,BY,(X). aY 

We now have two possibilities for the body width compared to wavelength. 
(i) Thin strut: LOB = 1, and (2 .24)  becomes 

aA/aY = sikOAY;(X) on Y = eYB, (2.25) 

so that the body only affects the waves a t  O(s) .  
(ii) Moderately thin strut: ko B = s-l. Note that, in this case, B / L  - O(s)  and the 

body is still thin compared to length. The boundary condition (2.24) now affects A a t  
the leading order and becomes 

a A p Y  = i k , A Y i ( X )  on Y = YB(X), (2.26) 

which must be applied exactly on the body. 

only a special case of (ii). 

boundary condition is 

We shall henceforth concentrate on the moderately thin strut and consider (i) as 

Far away from the body, at large Y ,  we expect no transverse variations, and the 

a A p Y - t o ,  ~ 3 0 0 ,  ( 2 . 2 7 ~ )  
or using (2 .17) ,  

A + A ,  e-4 iKAP,  Y --f 00, (2 .273)  

which is simply the undisturbed uniform Stokes wave. The appropriate initial con- 
dition just ahead of the body is 

A = A o ,  x = o .  (2.28) 

We further introduce the non-dimensional variables 

A = A/Ao, = k o X  = s2k0x, = ko Y = ~ k , y ,  yB = k,YB. (2.29) 
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FIGURE 1. Plot O f  @ V8. k,, h. 

The normalized initial boundary-value problem may be stated as follows : 

a.A . a 2 2  

ax aY2 
2- - z -+ iKIB(2’  = 0 for 7 > TB(X), X > 0, 

B = 1 ,  on X = O ,  

The parameter K is now given by 

K = (k ,A, /s)20(koh) 

with 
C, cosh 4k, h + 8 - 2 tanh2 k, h 

QC70 8 sinh4 k, h 
O(k,h) = - 

(2.30 a) 

(2 .30b)  

( 2 . 3 0 ~ )  

(2 .30d)  

(2 .31)  

(2 .32)  

Figure 1 is a plot of 0 against k, h. Note that 0 approaches 2 for k, h+ co but grows as 
( k ,  

Equation (2 .30)  must now be solved for the first-order wave envelope A ( X ,  Y ) .  
- - -  for k, h + 0 in shallow water. 

2.3 .  Method of numerical solution 
Since the boundary condition ( 2 . 3 0 ~ )  is applied on the body surface, analytic solu- 
tion to the nonlinear equation is difficult and one must in general integrate (2 .30a)  
numerically. 

The numerical computation marches forward i n x .  The range of Y ,  YB@) < 7 < ym, 
is chosen to be sufficiently large so that further increase of ym produces no significant 
changes in the solution. 

- -  
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Equation (2 .30d)  is replaced by 

on F = Fa. 
( 2 . 3 3 ~ )  

(2 .333)  

For (2 .30a) ,  we employ an implicit scheme of Crank-Nicholson type for integration 
in X, and centred second-order differencing in F: 

+ ( i  - AT2 2 2 7  + -iK12n/2xn)] + 0(Ax3, AT2), (2 .34a)  

where 

2B?+l=  2 2 7  + A X  + O(AXz, AF2), (2 .343)  

- 
A," g A(nAX, jAF) ,  

n =  1 , 2  ,..., N ,  

FB(nAX) = jZAH,  

Fa = JAY. 
j = jgq+ 1,jg+ 2, . .. , J - 1, 

F o r j  = j g ,  ( 2 . 3 4 ~ )  is modified by boundary condition (2 .30c) ,  
- - 

= i y B ( m A x )  + O(AY)2, m = n, n + 1 
2A Y 

and, of course, for j = J ,  (2 .333)  gives 

27 = , - W m ~ z ,  m = n, n + 1. 

( 2 . 3 4 ~ )  

(2 .34d)  

(2.34 e )  

(2.35) 

(2.36) 

Equation (2 .34a) ,  which has a global truncation error of (Ax2, AFz) ,  is well known to be 
unconditionally stable for the linear problem, and is found to be stable for reasonable 
choices of Ax and AH in the fully nonlinear case. From equation (2 .30)  a conservation 
law may be derived, 

(2.37) 

(2 .38)  

for a finite region. Equation (2 .38)  is used as a measure of the total error due to dis- 
cretization, round-off, and truncation of Fm; and is satisfied to within a few per cent for 
all computed cases. 

3. Numerical results for grazing incidence on a thin wedge 

angle a (i.e. y B  = x tan a), we define the width-to-length ratio 8 = tan a, so that 
For a train of Stokes waves incident along the axis of a vertical wedge of small half- 

- 
Y,(if) = x (3 .1 )  
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FIGURE 2. Magnitude squared of the envelope at the wall: IA(8, 7 = 8; K)l*, 

for different values of K. 

and equations (2.51a), ( 2 . 5 1 ~ )  become 

( 3 . 2 ~ )  

(3.2b) 

The governing equations now contain a single parameter K given by (2.31), which 
depends only on the incident wave characteristics and the wedge angle. 111 particular, 

(3.3) 
for deep water (k, h + co) 

which is simply twice the square of the wave steepness relative to wedge thickness. 

0 < x  < 8andY, = 100. 

For K = 0 (the linear case), an analytic solution can be directly obtained, with 

a i i  -- on P = X .  aP - 

K 2(k,A,/42, 

Equations (3.2), (2.30 b) and (2.33 b )  are solved numerically for a range of K and for 

Figure 2 shows a plot of along the wedge (on P = 1) for the different K values. 

- -  
IA(X,Y = X ) 1 2 =  II+erf(-@)*lz, (3.4) 

which oscillates about 4 and approaches it as 1 / 1  for x % 1. Equation (3.4) is indis- 
tinguishable from the computed K = 0 curve in figure 2. Note in figure 2 that, in con- 
trast to the linear case, the amplitude along the wedge for K > 0 grows for a short 
distance, then flattens out to a constant value. This value decreases with increasing 
K and we define for further reference 

(3.5) 

Noting the dependence of K on wave steepness and wedge slope, the qualitative fea- 
tures of figure 2 for the wave height along the wall are in agreement with earlier experi- 
mental observations. 

E-(K) = IB(Z = 8, H = X; K)I2. 
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K 0 0.6 1 2 4 6 10 
P(K) 1.00 1-03 1.23 1.50 1.94 2.28 2.82 

TABLE I 

For a global picture of the wave envelope, we display its magnitude squared, 
J A ( X ,  Y)I2 (which is also proportional to the second-order mean set-down), in three- 
dimensional plots for K = 0 , 2 , 6  (see figure 3 (a, b, c ) ) ,  where the wedgeisgivenaheight 
of 5 (note that 121 = 1 a t X  = 0) to provide a visual reference. The linear case ( K  = 0) 
is presented here for comparison. 

For the nonlinear cases (K > 0 ) ,  the overall amplitudes are much smaller than the 
linear case (decreasing as K increases), and there is a clearly defined region along the 
wall within which has a nearly constant value ( N E - ( K ) ) .  The width of this flat 
region appears to increase linearly with 1, at an angle which increases with K .  Outside 
of this region, the envelope undulates in a way qualitatively similar to that observed 
for the linear case. A more quantitative picture of these features can be obtained by 
studying successive cross-sections of la(X = Xi, Y)I2, and defining (rather arbi- 
trarily) a width F = M ( X ;  K )  corresponding to the edge of the flat region. Figures 
4 (a, b, c )  show some examples for K = 0, 2, 6 a t  xi = 4 and 8. The increasing width 
with K and is evident. We summarize the results for M ( x ,  K )  in figure 5,  where the 
points are from the computed results, and the straight lines their least-square linear 
fit. We see that the linear correlations are excellent, suggestinganempiricalrelationship 

- - -  

_ -  

of the form 
M ( X ;  K )  = ,8(K)X. 

The values ,8 for different K are shown in table 1. We shall return to the dependence 
P(K) later. 

For more physical information, we computed the first-order instantaneous free 

surface elevation 
(3.7) 

using the fact that x = e2k, x and 7 = ek, y .  Note that, for the same k,, the incoming 
Stokes wave has a longer wavelength for increasing nonlinearity given by the asymp- 
totic behaviour 2-t e-*iKF as P-+ 03. Here we display three-dimensional and contour 
plots of cl, but this time in uniformly scaled k,x and k , y  co-ordinates, so that all 
physical angles are undistorted (see figures 6 and 7).  Theparameterchosenisfor K = 0, 
1, 2, and for wedge slopes corresponding to e2 = 0.1 and 0.15 (half apex angles of 
a N 17-55' and 21.17" respectively). We caution that these values of K and e2 are 
selected here to accentuate the important features, and may correspond to  steeper 
waves than the theory permits. In  particular, for the steepest case presented: K = 2, 
€2 = 0.15, the wave slope would be k, A ,  N 0.387 for k, h N co, which is near breaking. 

From these figures we note that, for K = 0, the wave crests are rather straight except 
very near the wedge. The picture for the nonlinear cases becomes dramatically differ- 
ent. Here the waves are in general smaller (decreasing for larger K ) ,  and the equal 
phase lines are noticeably bent forward to somewhat beyond 90' along the wedge, 
forming stems with near-horizontal crest lines. The width of these stems grows linearly 
with distance so that they all remain inside another wedge whose apex angle increases 

cl(k0 x ,  k, y, t = 0 )  = Re {A(e2kox, ek, y) eiko "1, 
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FIGURE 3. Three-dimensional plots of JA(x, p)la in the region 0 < a < 6, x < 9 < 15, for 
(a)  K = 0, ( h )  K = 2. and ( c )  K = 6. All vertical scales are the sa.me. The wedge is given a height 
of 6. 
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FIGURE 4. Cross-sections of Iz(xi, 9)l2 at (i) g, = 4 and (ii) a, = 8 (x < p < 50) for 
(Q) K = 0, (b )  K = 2, and (c) k = 6. (Note that the curves start at the wall of the wedge given 
by 7 = x,.) 
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K =  10 
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20 
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FIGURE 5. Width of the Mach stem region M ( B ;  K ) .  + , the edge of the flat region; 
-, linear best fit by least square. 

with K (and e2). By comparing the slope of these regions with those found earlier in 
figure 5, the correspondence is evident, and clearly they also define the boundary of the 
Mach stems. We have thus shown that the numerical-empirical formula (3.7) for M 
governs the width and rate of growth of the Mach stems. Indeed, if we interpret the 
change of wavelength, incidence angle, water depth and incident wave height in terms 
of K ,  the qualitative conclusions of Nielsen (1962) and Berger &Kohlhase (1976)for the 
stem width are again confirmed by (3.7) and figure 7. In  particular, for those experi- 
ments with fixed A,/h and varying wavelengths, K increases as (k, h)-2 for small k, h ;  
thus the slope /3 can increase with wavelength, as mentioned in the introduction. 

4. Approximating the Mach-stem phenomenon by a shock 
The computed features associated with the Mach stems are so systematic that some 

analytical examinations are called for. The sharp bending of wave crests and the near- 
horizontal plateau of IB(2 inside a triangular stem region suggest that the region may 
be modelled as one side of a straight shock joining two discontinuous constant states. 
The undulatory variations outside clearly cannot be characterized as a constant region. 
Nevertheless let us ignore these undulations and examine whether a simple shock 
model will be able to predict the region of Mach stems. First, we rewrite ( 3 . 2 ~ )  by 

letting - 
A = aeiS, (4.1) 

where a, @ are real. Substituting (4.1) into ( 3 . 2 ~ )  and equating real and imaginary 
terms respectively, we obtain 

and 
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. .  

FIGURE 6. Three-dimensional plots of cl(k, x, k, y, t = 0) for (i) e2 = 0.1 (a  ," 17-55') and (ii) 
e2 = 0.15 (a  N 21.17"); and for (a )  K = 0, ( b )  K = 1, (c) K = 2 in uniformly scaled k, x, k, y CO- 

ordinates. The region shown is for O G G 6, X G Y G 18 corresponding to O G k, X G (60,40), 
k, x G k, y < (56-92, 46-48) for €2 = (0.1, 0.15). All vertical scales are the same and the body is 
given a height of 0. 
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which can be manipulated to give the conservation equations 

E z + ( E W ) , -  = 0 (4.4) 

and (4.5) 

where E = a2, W = $-p. (4.6), (4.7) 

Equations (4.4) and (4.5) resemble the conservation equations of Chu & Mei (1970) for 
time-evolving Stokes waves where i t  is known that omission of the term ~ Y P  leads to 
shocks (Whitham 1967). The transformation between ( 3 . 2 ~ )  and (4.4)-(4.5) is essen- 
tially the same as Davey (1972). 

We now ignore ~ F F  and assume that there is a line of discontinuity along P = BE, 
and that E, W have constant values on either side of this line. It is well known that for 
a conservation equation 

the shock condition is P[PI = [&I, (4.9) 

where [PI = P+ -P-, [&I = &+ - &- (4.10a, b )  

and P* = P(F 2 BX), etc. ( 4 . 1 0 ~ )  

Thus from (4.4) and (4.5) (neglecting the a F F  term) we have 

P(E+ - E-)  = E+ W+ - E- W-, 

p(W+- W-) = +(WZ,- W-)+ @ ( E + - E - ) .  

(4.11) 

(4.12) 

We now use the known asymptotic values 

E+ = E(H - +a) = 1, 

w+ = $ F ( H  N +a) = 0. 

(4.13) 

(4.14) 

Furthermore on the wall the boundary condition 

_ -  ' A  i~ on ~ = x  (4.15) 

implies that W = $ F = I  on Y = X .  (4.16) 

aP - 

Consistent with the shock assumption we take 

W- = I for X c H <BE. 
Entering (4.13), (4.14) and (4.17) in (4.11) and (4.12), weobtain 

(4.17) 

p(  1 - E-) = - E-, (4.18) 

(4.19) 
K - p  = - 1 2 + F  (1  - E J .  

It follows after eliminating that 
4 

E-='&[2K+1+(8K+1)1],  (4.20) 
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K 
FIQURE 8. Comparisonof numerical values for the slope of the Mach-stem region P(K) (*) and the 

amplitude squared along the wall E - ( K )  (a) with that predicted by shock theory (--). 

where the positive sign has been chosen for the radical so that E- is always positive. 
The shock slope is then 

(4.21) 

using (4.20). Knowing K from the characteristics of the incident waves and the wedge 
angle, the squared amplitude inside the Mach-stem region as well as the slope of the 
stem boundary are thus given theoretically by (4.20) and (4.21). These are compared 
with the results from the numerical experiments in figure 8. The agreement is sur- 
prisingly good, despite the gross simplification of the diffraction region outside the 
Mach stems. 

Finally, let us derive theoretically the angle of bending of the free surface crests 
across the shock. Integrating (4.17) with respect to Y ,  we get 

$-- = H + f ( X ) ,  px > H > x. (4.22) 

E- p = E x =  )[3+ (8K+ ')'I> 

On 7 = px, we require $- = $-+ so that 

11.J F+8 = px + f ( X )  = 11., )F+E = = - &Kx, (4.23) 

using the boundary condition. Hence, 

f ( X )  = - 4KX -@X. (4.24) 

Now the free surface dispIacement is 

~l(kox,koy) = Re(Aeikos) = acos($+k,x), 

6 = a- cos [( ko x) ( 1 - *e2K - e2/3) + e(ko y)]. 

(4.25) 

(4.26) so that 
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FIQURE 9. Plot of 6(a; K ) ,  the forward inclination of the Mach stems relative to the 
normal, as predicted by shock theory. 

If we denote by 8 the angle through which the crests bend across the shock, we have 

(4.27) 
8 - - € 

t an8  = 

on using (4.2 i ) for 8. 
To the leading order tan 8 2: E = tan a, so that the Mach stems are approximately 

orthogonal to the wall. To assess the small effect of K ,  we define the angle away from 
the normal by 6 = 8-a, then 

I (4.28) 

K 3+(8K+1)1 

K (8K+l ) t - i  ' 
9[5+ 4 

1 
tan6 = tan(8-a) = 

I-++ 

which is an O ( S ) ~  quantity; 6is plotted as a function of a and Kin  figure 9. To compare 
with computed results, the directions of the stem given by (4.28) are added as broken 
lines ( . -. -. ) in the contours of 

Despite these agreements, it  should be stressed that other conservation equations 
may be derived from (4.4) and (4.5), implying that a different pair of shock conditions 
may be used. Whether the present pair is the most appropriate is by no means clear. 
Because of the recognized shortcomings on one side of the shock, this ambiguity does 
not seem worth pursuing any further. 

in figure 7. The agreement is again satisfactory. 
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Appendix. Outline of derivation of the approximate equations 

obtain a sequence of perturbation problems 
Substituting (2.14)-(2.16) into (2.3) and expanding in Taylor series about z = 0, we 

(gi+$)+n=an on z = o ,  

and -gcn = H, on z = 0, (A 4) 

where F,, Gn, H, are given by lower-order terms. Finally, we introduce the Fourier 
expansions 

n 

m= -n 
(4n, Fn,  6 ,  G n ,  Hn) = X eim'(4mn,Fmn, Cmn, Gmn,  H m n ) ,  (A 5) 

where ( )-m, ,, ( ),, It are complex conjugates so that the variables on the left-hand side 
remain real, and 

$ = kox-wt ,  (A 6) 

w2 = L o g  tanh k,  h. (A 7) 

Note that 4,,, F,, are now complex functions of ( X ,  Y , z ) ,  and Cm,, G,,, H,, that of 
X ,  Y )  only. If we substitute (A 5) into (A 1)-(A 3) and use (A 4), we obtain at each rn 
and n a boundary-value problem in z :  

g--m2w2 #mn = Gmn on z = 0, 
( : z  ) 

At any q, non-trivial homogeneous solutions to the above boundary-value problem 
will only exist for m = 0 and m = 5 1, in which ease Fmn and Gma must satisfy solva- 
bility conditions to avoid secularity. In  particular we require 

and 

1 
- G ~ ,  = S o  pOndz for m = o 
9 - A  

dz for m = + 1 .  
1 cosh k,(z + h) 
j G m n  = $' -h Fmn coshk,h 
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The wave field to second order is found to be 

where * denotes the complex conjugate of the preceding term, 

Q = ko(z+h) ,  p = koh (A 13) 

and +ol, $02J A ,  B are complex functions of the slow variables (X, Y )  only. In par- 
ticular, at third order, solvability condition (A 10) gives equation (2.17), after sim- 
plification. 
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